

Concrete Masonry Units

Environmental Product Declaration

This document is a product-specific Type III environmental product declaration (EPD) for 14 concrete masonry unit (CMU) mixes manufactured by Air Vol Block, Inc. into a variety of shape and size configurations. This declaration has been prepared in accordance with ISO 14025, ISO 21930, and ASTM International's EPD program operator rules.

PCR review was conducted by:

Nicholas Santero, PE International (Chairperson) The PCR peer review report is available upon request: <u>cert@astm.org</u>

Independent verification of the declaration and data, according to ISO 14025: □ internal ⊠ external

Third-party verifier:

Thomas P. Gloria, PhD • <u>t.gloria@industrial-ecology.com</u> Industrial Ecology Consultants 35 Bracebridge Rd. • Newton, MA 02459-1728 (617) 553-4929 • <u>http://www.industrial-ecology.com</u>

Product Category Rule:

ASTM International PCR005: Product Category Rules for Preparing an Environmental Product Declaration for Manufactured Concrete and Concrete Masonry Products, issued December 2014

Declared Unit:

1 m³ of concrete formed into manufactured concrete and concrete masonry products

Program Operator:

ASTM International http://www.astm.org/EPDs.htm

EPD Owner:

Air Vol Block, Inc. 1 Suburban Road • San Luis Obispo, CA 93406 (805) 543-1314 • <u>http://www.airvolblock.com</u>

LCA and EPD Developer:

Laurel McEwen •

laurel.mcewen@climateearth.com

Climate Earth, Inc.

2150 Allston Way, Suite 320 • Berkeley, CA 94704 (415) 391-2725 • <u>http://www.climateearth.com</u>

Date of Issue:

August 17, 2015 (valid for 5 years until August 17, 2020)

ASTM Declaration Number: EPD-015

Company

Air Vol Block of San Luis Obispo, California is a manufacturer of quality concrete masonry units, Allan Block mortarless retaining wall systems, and interlocking concrete pavers.

Products

The 14 CMU mixes covered in this EPD are given in Table 1 and descriptions of each mix and their application are provided below. Images and configurations of block shapes and sizes produced from these 14 mixes are defined in Figures 1 & 2.

Table1:	CMU	mixes	covered	in	this	study	y.
1001011	01110	minceo	coverea	***	ci ilo	oraa	y.

name	abbreviation
LEED ¹ Slump	Slump
Normal Weight LEED 2000 PSI	NW -2000
Normal Weight LEED 2800 PSI	NW-2800
Normal Weight LEED 3750 PSI	NW-3750
Medium Weight LEED 2000 PSI	MW-2000
Medium Weight LEED 2800 PSI	MW-2800
Medium Weight LEED 3750 PSI	MW- 3750
Lightweight LEED 2000 PSI	LW-2000
Lightweight LEED 2800 PSI	LW-2800
Lightweight LEED 3750 PSI	LW-3750
Lightweight LEED w/ pumice	LW-p
Standard Normal Weight 2000 PSI	NW-Standard
Standard Medium Weight 2000PSI	MW-Standard
Standard Lightweight 2000PSI	LW-Standard

LEED Slump: A slightly rounded, random distortion with the look of rustic adobe. Configurations for structural and veneer applications. This product is manufactured with recycled concrete which could affect appearance.

Normal Weight LEED: A CMU typically used in architectural masonry, with normal weight aggregate. Configurations for structural and veneer applications. This product is manufactured with recycled concrete which may affect appearance.

Medium Weight LEED: A CMU typically used in architectural masonry, with both normal weight and lightweight aggregates. Configurations for structural and veneer applications. This product is manufactured with recycled concrete which could affect appearance.

Lightweight LEED: A CMU typically used in structural masonry, with lightweight aggregates (and optionally pumice for aesthetic effect). Configurations for structural and veneer applications. This product is manufactured with recycled concrete which may affect appearance.

Standard Normal Weight: A CMU typically used in architectural masonry, with normal weight aggregate. Configurations for structural and veneer applications.

Standard Medium Weight: A CMU typically used in architectural masonry, with both normal weight and lightweight aggregates. Configurations for structural and veneer applications.

Standard Lightweight: A CMU typically used in structural masonry, with lightweight aggregates (and optionally pumice for aesthetic effect). Configurations for structural and veneer applications.

These products are compliant to the following standards and specifications:

ASTM C90: Loadbearing Concrete Masonry Units

CSI Specification Section 04 22 00: Concrete Masonry Units

UNSPSC 30131502: Concrete blocks

¹ LEED, Leadership in Energy & Environmental Design, US Green Building Council.

Each of the fourteen different mixes covered in this EPD can be formed into a variety of different CMU sizes and shapes as depicted in Figures 1 & 2.

	12*4*16 Slump Bond Beam	Refe (6 Sharep Standard Open-End	8*6*16 SLUMP OPEN END STANDARD		12*6*8 Slump Half	A	6*6*14 SLUMP CORNER	8*6*8 Sluimp Half
	12*4*16 SLUMP STANDARD		12*4*8 Slump Half	· here there	16*4*16 SLUMP COLUMN	Contraction of the second	6*6*16 SLUMP BOND BEAM	8*6*1 6 SLUMP BOND BEAM
	6*4*16 SLUMP STANDARD	-?elst2 Starp Ceare	12*4*12 SLUMP COLUMN	ar an	16*6*16 SLUMP COLUMN		6*6*16 SLUMP STANDARD	8*6*16 SLUMP STANDARD
C. B. B.	6*4*16 SLUMP BOND BEAM	- 284/2 Skire Ottom	12*6*12 SLUMP COLUMN	4x4x12 Corner	4*4*12 SLUMP CORNER		6*6*8 SLUMP HALF	
	8*4*8 Slump Half		12*6*16 SLUMP BOND BEAM	A Marine	4*4*16 SLUMP STANDARD	Card Card	8*4*16 Slump Bond Beam	
Kels is Starp Beat Beas Open Find	8*6*16 SLUMP OPEN END BOND BEAM		12*6*16 SLUMP STANDARD	Carlos Carlos	4*4*8 Slump Half		8*4*16 SLUMP STANDARD	

Figure 1: Size and shape configurations of Slump LEED mix.

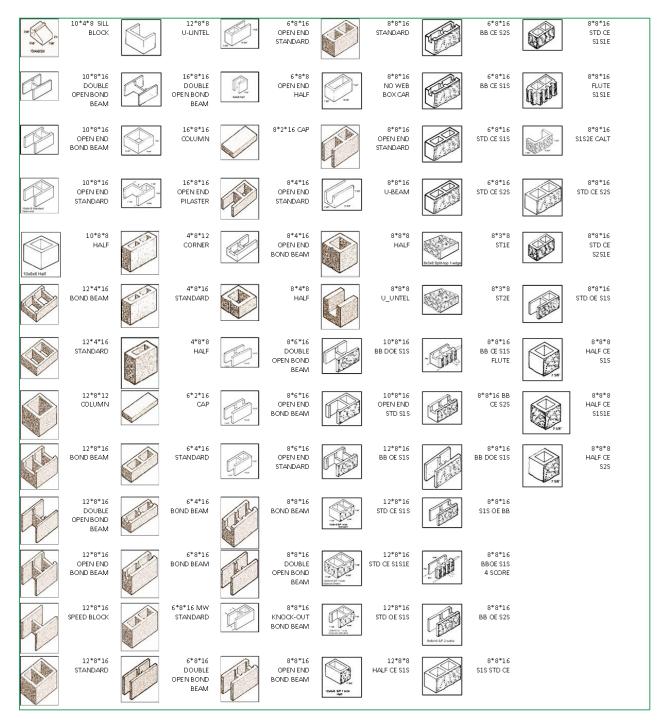
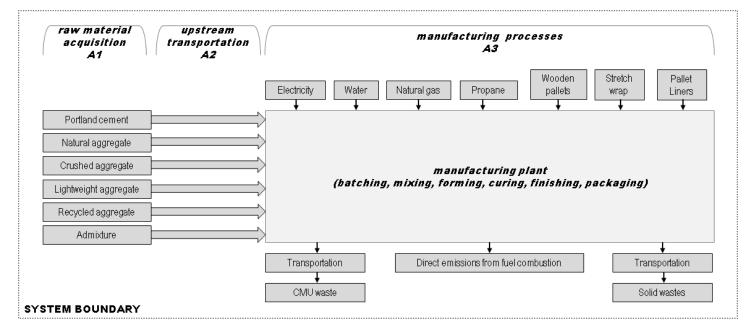


Figure 2: Size and shape configurations of Normal, Medium, and Lightweight LEED mixes and Normal, Medium and Lightweight Standard mixes.

Material Composition

The material composition of each product is listed in Table 2 below. Products are indicated using the mix abbreviations from Table 1. Materials are ordered by descending weight.

CMU Mix	Material Composition
Slump	natural aggregate, portland cement, recycled aggregate, batch water, pigment, admixture.
NW -2000	natural aggregate, portland cement, recycled aggregate, batch water, pigment, admixture.
NW-2800	natural aggregate, portland cement, recycled aggregate, batch water, pigment, admixture.
NW-3750	natural aggregate, portland cement, recycled aggregate, batch water, pigment, admixture.
MW-2000	natural aggregate, portland cement, recycled aggregate, batch water, pigment, admixture.
MW-2800	natural aggregate, portland cement, recycled aggregate, batch water, pigment, admixture.
MW- 3750	natural aggregate, portland cement, recycled aggregate, batch water, pigment, admixture.
LW-2000	lightweight aggregate, natural aggregate, portland cement, recycled aggregate, batch water, pigment, admixture.
LW-2800	lightweight aggregate, natural aggregate, portland cement, recycled aggregate, batch water, pigment, admixture.
LW-3750	lightweight aggregate, natural aggregate, portland cement, recycled aggregate, batch water, pigment, admixture.
LW-p	pumice, natural aggregate, portland cement, lightweight aggregate, recycled aggregate, batch water, pigment, admixture.
NW-Standard	natural aggregate, portland cement, batch water, pigment, admixture.
MW-Standard	natural aggregate, portland cement, batch water, pigment, admixture.
LW-Standard	natural aggregate, pumice, lightweight aggregate, portland cement, batch water, pigment, admixture.


Table 2: Material composition of mixes, ordered by descending weight.

Study

The impact results are based on a cradle-to-gate life cycle assessment (LCA) study covering the following phases of the life cycle:

- A1 raw material acquisition;
- A2 upstream transportation; and
- A3 manufacturing processes.

A flow diagram illustrating the main unit processes by life cycle stage is provided below in Figure 3.

The following cradle-to-gate life cycle stages are excluded from the primary product stages:

- 1. Production, manufacture, and construction of manufacturing capital goods and infrastructure.
- 2. Production and manufacture of production equipment, delivery vehicles, and laboratory equipment.
- 3. Personnel-related activities (travel, furniture, office supplies).
- 4. Energy and water use related to company management and sales activities that may be located either within the factory site or at another location.

This EPD covers only the cradle-to-gate impacts of manufactured concrete and concrete masonry products using a declared unit, and the results cannot be used to compare between products. Only EPDs prepared from cradle-to-grave life cycle results and based on the same function and reference service life (RSL), quantified by the same functional unit, and meeting all the conditions in ISO 14025, Section 7.2.2 can be used to assist purchasers and users in making informed comparisons between products.

EPDs from different programs (using different PCR) may not be comparable.

Air Vol Block Environmental Product Declaration Declared Impacts

Product mix specific impact results per m3 of concrete formed are displayed in Table 3.

		-				÷				-					
							Concrete	Mix							
Impact category	Unit	Slump	LW-p	LW- 2000	LW- 2800	LW- 3750	MW- 2000	MW- 2800	MW- 3750	NW- 2000	NW- 2800	NW- 3750	LW- Standard	MW- Standard	NW- Standard
Global warming potential	kg CO2 eq	454	566	740	776	805	506	533	575	478	505	547	597	507	497
Acidification potential	kg SO2 eq	1.97	2.37	3.44	3.60	3.74	2.06	2.19	2.38	2.01	2.13	2.33	2.51	2.06	2.10
Eutrophication potential	kg N eq	0.229	0.271	0.395	0.409	0.422	0.238	0.249	0.266	0.240	0.251	0.268	0.282	0.236	0.245
Smog creation potential	kg O3 eq	28.1	35.0	43.1	45.4	47.2	31.9	33.6	36.2	29.9	31.6	34.3	37.0	32.0	31.1
Ozone depletion	kg CFC-11 eq	4.01E-05	5.37E-05	8.01E-05	8.06E-05	8.10E-05	5.00E-05	5.03E-05	5.09E-05	4.95E-05	4.99E-05	5.04E-05	5.41E-05	5.00E-05	4.97E-05
Nonrenewable, fossil	MJ	2,450	3,607	6,110	6,255	6,376	2,825	2,935	3,107	2,677	2,788	2,960	3,735	2,829	2,732
Non-renewable, nuclear	MJ	187	194	269	282	293	181	191	206	193	203	218	203	177	197
Renewable, biomass	MJ	117	125	158	159	160	116	117	119	117	118	119	126	116	117
Renewable, wind, solar, geothermal	MJ	8.11	8.37	10.87	11.31	11.68	7.92	8.26	8.79	8.34	8.67	9.20	8.66	7.80	8.45
Nonrenewable material resources	kg	1,498	1,632	1,275	1,309	1,336	1,941	1,967	2,007	1,845	1,871	1,910	1,791	2,111	1,939
Renewable material resources	kg	6.46	6.94	8.77	8.84	8.89	6.43	6.49	6.56	6.45	6.50	6.58	6.99	6.43	6.49
Net fresh water	m3	325	331	393	406	416	320	330	344	331	341	355	339	317	335
Non-hazardous waste generated	kg	19.64	19.79	19.30	20.36	21.24	21.01	21.81	23.07	20.96	21.76	23.02	20.68	21.00	21.70
Hazardous waste generated	kg	5.43	4.89	4.35	4.90	5.35	5.29	5.71	6.35	5.29	5.71	6.35	5.36	5.29	5.71
Reclaimed Concrete Masonry Products	kg	141	124	120	122	124	163	165	167	184	185	188	0	0	0

Table 3: Impact results for Air Vol Block mixes, per m3 of concrete formed into concrete masonry units (CMU).

Calculated impact results are relative expressions and do not predict impacts on category endpoints, the exceeding of thresholds, safety margins or risks.